Doel: Maak seker Random Outokorrelasie erwe (. Box en Jenkins, pp 28-32) is 'n algemeen gebruikte instrument vir die beheer van ewekansigheid in 'n datastel. Dit willekeur word vasgestel deur die berekening van outokorrelasies vir datawaardes op verskillende tyd loop. As ewekansige, moet so 'outokorrelasies wees naby nul vir enige en alle tye-lag skeidings. As nie-ewekansige, sal dan een of meer van die outokorrelasies aansienlik nie-nul wees. Daarbenewens is outokorrelasie erwe wat in die model identifikasie weg gebaan vir Box-Jenkins outoregressiewe bewegende gemiddelde tydreeksmodelle. Outokorrelasie is slegs een maat van Random Let daarop dat ongekorreleerd nie noodwendig ewekansige beteken. Data wat beduidende outokorrelasie het nie lukraak. Maar data wat nie beduidende outokorrelasie nie wys kan steeds uitstal nie-willekeur op ander maniere. Outokorrelasie is net een maatstaf van willekeur. In die konteks van model validering (wat is die primêre tipe willekeur ons dicuss in die handboek) en kontroleer vir outokorrelasie is tipies 'n voldoende toets van ewekansigheid sedert die residue van 'n swak passing modelle is geneig om nie-subtiele willekeur te vertoon. Maar sommige programme vereis dat 'n meer streng bepaling van willekeur. In sulke gevalle, 'n battery van toetse, wat kan insluit die nagaan vir outokorrelasie, toegepas sedert data nie-ewekansige in baie verskillende en dikwels subtiele maniere kan wees. 'N Voorbeeld van waar 'n meer streng tjek vir willekeur nodig sou wees in die toets van ewekansige getal kragopwekkers. Monster Plot: outokorrelasies moet wees naby-nul vir willekeur. So is dit nie die geval in hierdie voorbeeld en dus die willekeur aanname versuim Hierdie voorbeeld outokorrelasie plot toon dat die tydreeks is nie lukraak nie, maar eerder 'n hoë graad van outokorrelasie tussen aangrensende en naby-aangrensende waarnemings. Definisie: R (h) teenoor h Outokorrelasie erwe word gevorm deur Vertikale as: Outokorrelasie koëffisiënt waar C h is die outokovariansiefunksie en C 0 is die variansie funksie Let daarop dat R h is tussen -1 en 1. Let daarop dat sommige bronne kan gebruik maak van die volgende formule vir die outokovariansiefunksie Hoewel hierdie definisie het minder vooroordeel, die (1 / N) formulering het 'n paar wenslik statistiese eienskappe en is die vorm wat die algemeenste gebruik word in die statistieke literatuur. Sien bladsye 20 en 49-50 in Chat Field vir meer inligting. Horisontale as: tydsverloop h (h 1, 2, 3) Die bo lyn bevat ook verskeie horisontale verwysing lyne. Die middellyn is op nul. Die ander vier lyne is 95 en 99 vertroue bands. Let daarop dat daar twee afsonderlike formules vir die opwekking van die vertroue bands. As die outokorrelasie plot gebruik word om te toets vir willekeur (dws daar is geen tyd afhanklikheid in die data), is die volgende formule aanbeveel: waar n die steekproefgrootte, Z is die kumulatiewe verdelingsfunksie van die standaard normale verspreiding en (alfa ) is die betekenis vlak. In hierdie geval, het die vertroue bands vaste wydte wat afhanklik is van die steekproefgrootte. Dit is die formule wat gebruik is om die vertroue bands in die bogenoemde plot te genereer. Outokorrelasie erwe word ook gebruik in die model identifikasie weg gebaan vir pas ARIMA modelle. In hierdie geval, is 'n bewegende gemiddelde model aanvaar vir die data en die volgende vertroue bands moet gegenereer word: waar k die lag, N is die steekproefgrootte, Z is die kumulatiewe verdelingsfunksie van die standaard normale verspreiding en (alfa) is die betekenis vlak. In hierdie geval, die vertroue bands toeneem soos die lag verhoog. Die outokorrelasie plot kan antwoorde vir die volgende vrae verskaf: Is die data ewekansige Is 'n waarneming wat verband hou met 'n aangrensende opmerking is 'n waarneming wat verband hou met 'n waarneming twee keer verwyder (ens) Is die waargenome tydreekse wit geraas is die waargenome tydreekse sinusvormige is die waargeneem tyd reeks outoregressiewe Wat is 'n geskikte model vir die waargenome tydreeks is die model geldig en voldoende is die formule SS / sqrt geldige belang: Verseker geldigheid van ingenieurswese gevolgtrekkings Random (saam met 'n vaste model, vaste variasie, en 'n vaste verspreiding) is een van die vier aannames wat tipies onderliggend al meting prosesse. Die willekeur aanname is van kritieke belang vir die volgende drie redes: Die meeste standaard statistiese toetse afhang van willekeur. Die geldigheid van die toets gevolgtrekkings is direk gekoppel aan die geldigheid van die willekeur aanname. Baie algemeen gebruikte statistiese formules afhang van die willekeur aanname, die mees algemene formule om die formule vir die bepaling van die standaard afwyking van die steekproefgemiddelde: waar s die standaardafwyking van die data. Hoewel swaar gebruik, die resultate van die gebruik van hierdie formule is van geen waarde nie, tensy die willekeur aanname hou. Vir eenveranderlike data, die standaard model is As die data is nie van ewekansige, hierdie model is verkeerd en ongeldig, en die skattings vir die parameters (soos die konstante) geword nonsens en ongeldig. In kort, as die ontleder nie kyk vir willekeur, dan is die geldigheid van baie van die statistiese gevolgtrekkings word vermoed. Die outokorrelasie plot is 'n uitstekende manier om die beheer van sodanige randomness. A Rima staan vir outoregressiewe geïntegreerde bewegende gemiddelde modelle. Eenveranderlike (enkele vektor) ARIMA is 'n vooruitskatting tegniek wat die toekomstige waardes van 'n reeks ten volle gebaseer op sy eie traagheid projekte. Die belangrikste aansoek is op die gebied van korttermyn voorspelling wat ten minste 40 historiese data punte. Dit werk die beste wanneer jou data toon 'n stabiele of konsekwent patroon met verloop van tyd met 'n minimum bedrag van uitskieters. Soms genoem word Posbus-Jenkins (ná die oorspronklike skrywers), ARIMA is gewoonlik beter as gladstrykingstegnieke eksponensiële wanneer die data is redelik lank en die korrelasie tussen die verlede waarnemings is stabiel. As die data is kort of baie volatiel, dan kan 'n paar smoothing metode beter te presteer. As jy nie ten minste 38 datapunte het, moet jy 'n ander metode as ARIMA oorweeg. Die eerste stap in die toepassing van ARIMA metode is om te kyk vir stasionariteit. Stasionariteit impliseer dat die reeks bly op 'n redelik konstante vlak met verloop van tyd. As 'n tendens bestaan, soos in die meeste ekonomiese of besigheid aansoeke, dan is jou data nie stilstaan. Die data moet ook 'n konstante stryd in sy skommelinge oor tyd te wys. Dit is maklik gesien met 'n reeks wat swaar seisoenale en groei teen 'n vinniger tempo. In so 'n geval, sal die wel en wee van die seisoen meer dramaties met verloop van tyd. Sonder hierdie stasionariteit voorwaardes voldoen word, baie van die berekeninge wat verband hou met die proses kan nie bereken word nie. As 'n grafiese plot van die data dui stationariteit, dan moet jy verskil die reeks. Breukmetodes is 'n uitstekende manier om die transformasie van 'n nie-stationaire reeks om 'n stilstaande een. Dit word gedoen deur die aftrekking van die waarneming in die huidige tydperk van die vorige een. As hierdie transformasie slegs een keer gedoen word om 'n reeks, sê jy dat die data het eers differenced. Hierdie proses elimineer wese die tendens as jou reeks groei teen 'n redelik konstante tempo. As dit groei teen 'n vinniger tempo, kan jy dieselfde prosedure en verskil die data weer aansoek doen. Jou data sal dan tweede differenced. Outokorrelasies is numeriese waardes wat aandui hoe 'n data-reeks is wat verband hou met self met verloop van tyd. Meer presies, dit meet hoe sterk datawaardes op 'n bepaalde aantal periodes uitmekaar gekorreleer met mekaar oor tyd. Die aantal periodes uitmekaar is gewoonlik bekend as die lag. Byvoorbeeld, 'n outokorrelasie op lag 1 maatreëls hoe waardes 1 tydperk uitmekaar gekorreleer met mekaar oor die hele reeks. 'N outokorrelasie op lag 2 maatreëls hoe die data twee periodes uitmekaar gekorreleer regdeur die reeks. Outokorrelasies kan wissel van 1 tot -1. 'N Waarde naby aan 1 dui op 'n hoë positiewe korrelasie, terwyl 'n waarde naby aan -1 impliseer 'n hoë negatiewe korrelasie. Hierdie maatreëls is meestal geëvalueer deur middel van grafiese plotte genoem correlagrams. A correlagram plotte die motor - korrelasie waardes vir 'n gegewe reeks by verskillende lags. Dit staan bekend as die outokorrelasie funksie en is baie belangrik in die ARIMA metode. ARIMA metode poog om die bewegings in 'n stilstaande tyd reeks beskryf as 'n funksie van wat is outoregressiewe en bewegende gemiddelde parameters genoem. Dit is waarna verwys word as AR parameters (autoregessive) en MA parameters (bewegende gemiddeldes). 'N AR-model met slegs 1 parameter kan geskryf word as. X (t) 'n (1) X (t-1) E (t) waar x (t) tydreekse wat ondersoek word 'n (1) die outoregressiewe parameter van orde 1 X (t-1) die tydreeks uitgestel 1 periode E (t) die foutterm van die model beteken dit eenvoudig dat enige gegewe waarde X (t) kan verduidelik word deur 'n funksie van sy vorige waarde, X (t-1), plus 'n paar onverklaarbare ewekansige fout, E (t). As die beraamde waarde van A (1) was 0,30, dan is die huidige waarde van die reeks sal wees met betrekking tot 30 van sy waarde 1 periode gelede. Natuurlik, kan die reeks word wat verband hou met meer as net 'n verlede waarde. Byvoorbeeld, X (t) 'n (1) X (t-1) A (2) X (t-2) E (t) Dit dui daarop dat die huidige waarde van die reeks is 'n kombinasie van die twee onmiddellik voorafgaande waardes, X (t-1) en X (t-2), plus 'n paar random fout E (t). Ons model is nou 'n outoregressiewe model van orde 2. bewegende gemiddelde modelle: 'n Tweede tipe Box-Jenkins model is 'n bewegende gemiddelde model genoem. Hoewel hierdie modelle lyk baie soortgelyk aan die AR model, die konsep agter hulle is heel anders. Bewegende gemiddelde parameters verband wat gebeur in tydperk t net om die ewekansige foute wat plaasgevind het in die verlede tyd periodes, naamlik E (t-1), E (t-2), ens, eerder as om X (t-1), X ( t-2), (xt-3) as in die outoregressiewe benaderings. 'N bewegende gemiddelde model met 'n MA termyn kan soos volg geskryf word. X (t) - B (1) E (t-1) E (t) Die term B (1) genoem word 'n MA van orde 1. Die negatiewe teken voor die parameter is slegs vir konvensie en word gewoonlik gedruk uit motor - dateer deur die meeste rekenaarprogramme. Bogenoemde model eenvoudig sê dat enige gegewe waarde van X (t) direk verband hou net aan die ewekansige fout in die vorige tydperk, E (t-1), en die huidige foutterm, E (t). Soos in die geval van outoregressiemodelle, kan die bewegende gemiddelde modelle uitgebrei word na 'n hoër orde strukture wat verskillende kombinasies en bewegende gemiddelde lengtes. ARIMA metode kan ook modelle gebou word dat beide outoregressiewe en gemiddelde parameters saam beweeg inkorporeer. Hierdie modelle word dikwels na verwys as gemengde modelle. Hoewel dit maak vir 'n meer ingewikkelde voorspelling instrument, kan die struktuur inderdaad die reeks beter na te boots en produseer 'n meer akkurate skatting. Suiwer modelle impliseer dat die struktuur bestaan slegs uit AR of MA parameters - nie beide. Die ontwikkel deur hierdie benadering modelle word gewoonlik genoem ARIMA modelle omdat hulle 'n kombinasie van outoregressiewe (AR) te gebruik, integrasie (I) - verwys na die omgekeerde proses van breukmetodes die voorspelling te produseer, en bewegende gemiddelde (MA) operasies. 'N ARIMA model word gewoonlik gestel as ARIMA (p, d, q). Dit verteenwoordig die orde van die outoregressiewe komponente (p), die aantal breukmetodes operateurs (d), en die hoogste orde van die bewegende gemiddelde termyn. Byvoorbeeld, ARIMA (2,1,1) beteken dat jy 'n tweede orde outoregressiewe model met 'n eerste orde bewegende gemiddelde komponent waarvan die reeks is differenced keer om stasionariteit veroorsaak. Pluk die reg spesifikasie: Die grootste probleem in die klassieke Box-Jenkins probeer om te besluit watter ARIMA spesifikasie gebruik - i. e. hoeveel AR en / of MA parameters in te sluit. Dit is wat die grootste deel van Box-Jenkings 1976 is gewy aan die identifikasieproses. Dit was afhanklik van grafiese en numeriese eval - uation van die monster outokorrelasie en gedeeltelike outokorrelasiefunksies. Wel, vir jou basiese modelle, die taak is nie te moeilik. Elk outokorrelasiefunksies dat 'n sekere manier te kyk. Maar wanneer jy optrek in kompleksiteit, die patrone is nie so maklik opgespoor. Om sake nog moeiliker maak, jou data verteenwoordig slegs 'n voorbeeld van die onderliggende proses. Dit beteken dat steekproeffoute (uitskieters, meting fout, ens) die teoretiese identifikasie proses kan verdraai. Dit is waarom tradisionele ARIMA modellering is 'n kuns eerder as 'n science.2.1 bewegende gemiddelde modelle (MA modelle) tydreeksmodelle bekend as ARIMA modelle kan die volgende insluit outoregressiewe terme en / of bewegende gemiddelde terme. In Week 1, het ons geleer 'n outoregressiewe term in 'n tydreeks model vir die veranderlike x t is 'n vertraagde waarde van x t. Byvoorbeeld, 'n lag 1 outoregressiewe termyn is x t-1 (vermenigvuldig met 'n koëffisiënt). Hierdie les definieer bewegende gemiddelde terme. 'N bewegende gemiddelde termyn in 'n tydreeks model is 'n verlede fout (vermenigvuldig met 'n koëffisiënt). Laat (WT omslaan N (0, sigma2w)), wat beteken dat die w t is identies, onafhanklik versprei, elk met 'n normaalverdeling met gemiddelde 0 en dieselfde afwyking. Die 1 ste orde bewegende gemiddelde model, aangedui deur MA (1) is (xt mu wt theta1w) Die 2de orde bewegende gemiddelde model, aangedui deur MA (2) is (xt mu wt theta1w theta2w) Die Q de orde bewegende gemiddelde model , aangedui deur MA (Q) is (xt mu wt theta1w theta2w kolle thetaqw) Nota. Baie handboeke en sagteware programme definieer die model met negatiewe tekens voor die terme. Dit nie die geval verander die algemene teoretiese eienskappe van die model, hoewel dit flip die algebraïese tekens van beraamde koëffisiënt waardes en (unsquared) terme in formules vir ACFs en afwykings. Jy moet jou sagteware kyk om te kontroleer of negatiewe of positiewe tekens is gebruik om korrek te skryf die beraamde model. R gebruik positiewe tekens in sy onderliggende model, soos ons hier doen. Teoretiese Eienskappe van 'n tydreeks met 'n MA (1) Model Let daarop dat die enigste nie-nul waarde in die teoretiese ACF is vir lag 1. Alle ander outokorrelasies is 0. So 'n monster ACF met 'n beduidende outokorrelasie net by lag 1 is 'n aanduiding van 'n moontlike MA (1) model. Vir belangstellende studente, bewyse van hierdie eienskappe is 'n bylae tot hierdie opdragstuk. Voorbeeld 1 Veronderstel dat 'n MA (1) model is x t 10 w t 0,7 w t-1. waar (WT omslaan N (0,1)). So het die koëffisiënt 1 0.7. Die teoretiese ACF gegee word deur 'n plot van hierdie volg ACF. Die plot net aangedui is die teoretiese ACF vir 'n MA (1) met 1 0.7. In die praktyk, 'n monster gewoond gewoonlik verskaf so 'n duidelike patroon. Die gebruik van R, gesimuleerde ons N 100 monster waardes gebruik te maak van die model x t 10 w t 0,7 w t-1 waar w t IID N (0,1). Vir hierdie simulasie, 'n tydreeks plot van die steekproefdata volg. Ons kan nie sê baie van hierdie plot. Die monster ACF vir die gesimuleerde data volg. Ons sien 'n skerp styging in lag 1 gevolg deur die algemeen nie-beduidende waardes vir lags afgelope 1. Let daarop dat die monster ACF kom nie ooreen met die teoretiese patroon van die onderliggende MA (1), en dit is dat al outokorrelasies vir lags afgelope 1 sal wees 0 . 'n ander voorbeeld sou 'n effens verskillende monster ACF hieronder getoon, maar sal waarskynlik dieselfde breë funksies. Theroretical Eienskappe van 'n tydreeks met 'n MA (2) model vir die MA (2) model, teoretiese eienskappe is soos volg: Let daarop dat die enigste nie-nul waardes in die teoretiese ACF is vir lags 1 en 2. outokorrelasies vir hoër lags is 0 . So, 'n monster ACF met 'n beduidende outokorrelasies by lags 1 en 2, maar nie-beduidende outokorrelasies vir hoër lags dui op 'n moontlike MA (2) model. IID N (0,1). Die koëffisiënte is 1 0.5 en 2 0.3. Want dit is 'n MA (2), sal die teoretiese ACF nul waardes het net by lags 1 en 2. Waardes van die twee nie-nul outokorrelasies is 'n plot van die teoretiese ACF volg. Soos byna altyd die geval is, monster data gewoond te tree heeltemal so perfek as teorie. Ons gesimuleerde N 150 monster waardes vir die model x t 10 w t 0,5 w t-1 0,3 w t-2. waar w t IID N (0,1). Die tydreekse plot van die data volg. Soos met die tydreeks plot vir die MA (1) voorbeeld van die data, kan nie vir jou sê baie daaruit. Die monster ACF vir die gesimuleerde data volg. Die patroon is tipies vir situasies waar 'n MA (2) model nuttig kan wees. Daar is twee statisties beduidende spykers by lags 1 en 2, gevolg deur nie-beduidende waardes vir ander lags. Let daarop dat as gevolg van steekproeffout, die monster ACF nie die teoretiese patroon presies ooreenstem. ACF vir Algemene MA (Q) Models n eiendom van MA (Q) modelle in die algemeen is dat daar nie-nul outokorrelasies vir die eerste Q lags en outokorrelasies 0 vir alle lags GT q. Nie-uniekheid van verband tussen waardes van 1 en (rho1) in MA (1) Model. In die MA (1) model, vir enige waarde van 1. die wedersydse 01/01 gee dieselfde waarde vir so 'n voorbeeld, gebruik 0,5 vir 1. en gebruik dan 1 / (0,5) 2 vir 1. Jy sal kry (rho1) 0.4 in beide gevalle. Om 'n teoretiese beperking genoem inverteerbaarheid bevredig. Ons beperk MA (1) modelle om waardes met absolute waarde minder as 1. In die voorbeeld net gegee, 1 0.5 sal 'n toelaatbare parameter waarde wees nie, terwyl 1 1 / 0.5 2 nie. Inverteerbaarheid van MA modelle 'n MA-model word gesê omkeerbare te wees indien dit algebraïes gelykstaande aan 'n konvergerende oneindige orde AR model. Bevestig deur die, bedoel ons dat die AR koëffisiënte daal tot 0 as ons terug beweeg in die tyd. Inverteerbaarheid is 'n beperking geprogrammeer in die tyd reeks sagteware wat gebruik word om die koëffisiënte van modelle te skat met MA terme. Dit is nie iets wat ons gaan vir die data-analise. Bykomende inligting oor die inverteerbaarheid beperking vir MA (1) modelle word in die bylaag. Gevorderde teorie Nota. Vir 'n MA (Q) model met 'n bepaalde ACF, daar is net een omkeerbare model. Die noodsaaklike voorwaarde vir inverteerbaarheid is dat die koëffisiënte waardes sodanig dat die vergelyking 1- 1 y. - Q y q 0 het oplossings vir y wat buite die eenheidsirkel val. R-kode vir die voorbeelde in Voorbeeld 1, ons geplot die teoretiese ACF van die model x t 10 w t. 7W t-1. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik word om die teoretiese ACF plot was: acfma1ARMAacf (Mac (0,7), lag. max10) 10 lags van ACF vir MA (1) met theta1 0.7 lags0: 10 skep 'n veranderlike genaamd lags wat wissel van 0 tot 10. plot (lags, acfma1, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (1) met theta1 0.7) abline (H0) voeg n horisontale as om die plot die eerste opdrag bepaal die ACF en slaan dit in 'n voorwerp vernoem acfma1 (ons keuse van naam). Die plot opdrag (die 3de gebod) erwe lags teenoor die ACF waardes vir lags 1 tot 10. Die ylab parameter etikette die y-as en die belangrikste parameter sit 'n titel op die plot. Om te sien die numeriese waardes van die ACF net gebruik die opdrag acfma1. Die simulasie en erwe is gedoen met die volgende opdragte. xcarima. sim (N150, lys (Mac (0,7))) Simuleer N 150 waardes van MA (1) xxc10 voeg 10 tot gemiddelde 10. Simulasie gebreke maak beteken 0. plot (x, typeb, mainSimulated MA (1) data) ACF (x, xlimc (1,10), mainACF vir gesimuleerde steekproefdata) In Voorbeeld 2, ons geplot die teoretiese ACF van die model xt 10 wt 0,5 w t-1 0,3 w t-2. en dan nageboots N 150 waardes van hierdie model en geplot die monster tydreekse en die monster ACF vir die gesimuleerde data. Die R bevele gebruik was acfma2ARMAacf (Mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, hoof ACF vir MA (2) met theta1 0.5, theta20.3) abline (H0) xcarima. sim (N150, lys (Mac (0.5, 0.3))) xxc10 plot (x, typeb, hoof Gesimuleerde MA (2) Series) ACF (x, xlimc (1,10), mainACF vir gesimuleerde MA (2) Data) Bylae: Bewys van eiendomme van MA (1) vir belangstellende studente, hier is bewyse vir teoretiese eienskappe van die MA (1) model. Variansie: (teks (xt) teks (mu wt theta1 w) 0 teks (WT) teks (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wanneer h 1, die vorige uitdrukking 1 W 2. Vir enige h 2, die vorige uitdrukking 0 . die rede hiervoor is dat per definisie van onafhanklikheid van die WT. E (w k w j) 0 vir enige k j. Verder, omdat die w t het intussen 0, E (w j w j) E (w j 2) w 2. Vir 'n tydreeks, Pas hierdie resultaat aan die ACF hierbo kry. 'N omkeerbare MA model is die een wat geskryf kan word as 'n oneindige orde AR model wat konvergeer sodat die AR koëffisiënte konvergeer na 0 as ons oneindig terug in die tyd beweeg. Wel demonstreer inverteerbaarheid vir die MA (1) model. Ons het toe plaasvervanger verhouding (2) vir w t-1 in vergelyking (1) (3) (ZT wt theta1 (Z - theta1w) wt theta1z - theta2w) op tydstip t-2. vergelyking (2) word Ons het toe plaasvervanger verhouding (4) vir w t-2 in vergelyking (3) (ZT wt theta1 Z - theta21w wt theta1z - theta21 (Z - theta1w) wt theta1z - theta12z theta31w) As ons voortgaan ( oneindig), sou ons die oneindige orde AR model kry (ZT wt theta1 Z - theta21z theta31z - theta41z kolletjies) Nota egter dat as 1 1, die koëffisiënte die lags van Z vermenigvuldig sal toeneem (oneindig) in grootte as ons terug beweeg in tyd. Om dit te voorkom, moet ons 1 LT1. Dit is die voorwaarde vir 'n omkeerbare MA (1) model. Oneindige Bestel MA model In week 3, goed sien dat 'n AR (1) model kan omgeskakel word na 'n oneindige orde MA model: (xt - mu wt phi1w phi21w kolle phik1 w kolle som phij1w) Hierdie opsomming van verlede wit geraas terme is bekende as die oorsaaklike voorstelling van 'n AR (1). Met ander woorde, x t is 'n spesiale tipe MA met 'n oneindige aantal terme terug gaan in die tyd. Dit is 'n oneindige orde MA of MA () genoem. 'N Eindige orde MA is 'n oneindige orde AR en enige eindige orde AR is 'n oneindige orde MA. Onthou in Week 1, het ons opgemerk dat 'n vereiste vir 'n stilstaande AR (1) is dat 1 LT1. Kom ons bereken die Var (x t) met behulp van die oorsaaklike verteenwoordiging. Die laaste stap gebruik 'n basiese feit oor meetkundige reeks wat vereis (phi1lt1) anders sal die reeks divergeer. NavigationARMA en ARIMA (Box-Jenkins) modelle ARMA en ARIMA (Box-Jenkins) modelle in die voorafgaande gedeeltes het ons gesien hoe die waarde van 'n eenveranderlike tydreekse op tydstip t. x t. gemodelleer kan word met behulp van 'n verskeidenheid van bewegende gemiddelde uitdrukkings. Ons het ook getoon dat komponente soos tendense en periodisiteit in die tydreeks uitdruklik gemodelleer kan word en / of geskei het, met die data wat ontbind word in tendens, seisoenale en oorblywende komponente. Ons het ook gewys, in die vorige besprekings oor outokorrelasie. dat die volle en gedeeltelike outokorrelasie koëffisiënte is baie nuttig in die identifisering en modellering patrone in tydreekse. Hierdie twee aspekte van tydreeksanalise en modellering kan gekombineer word in 'n meer algemene en dikwels baie effektief, algehele modellering raamwerk. In sy basiese vorm hierdie benadering staan bekend as ARMA modellering (outoregressiewe bewegende gemiddelde), of wanneer breukmetodes is ingesluit in die proses, ARIMA of Posbus-Jenkins modellering, nadat die twee skrywers wat sentraal tot die ontwikkeling daarvan was (sien kassie amp Jenkins, 1968 BOX1, en Box, Jenkins amp Reinsel, 1994 BOX2). Daar is geen vaste reël met betrekking tot die aantal tydperke wat nodig is vir 'n suksesvolle model oefening, maar vir meer komplekse modelle, en vir 'n groter vertroue in prosedures fiks en validering, reeks met 50 keer stappe word dikwels aanbeveel. ARMA modelle kombineer outokorrelasie metodes (AR) en bewegende gemiddeldes (MA) in 'n saamgestelde model van die tydreeks. Voor oorweging van hoe hierdie modelle kan gekombineer word, ons kyk na elkeen afsonderlik. Ons het reeds gesien dat bewegende gemiddelde (MA) modelle kan gebruik word om 'n goeie passing te gee aan 'n paar datastelle en variasies op hierdie modelle wat dubbel of trippel eksponensiële gladstryking kan hanteer tendens en periodieke komponente in die data behels. Verder kan sulke modelle word gebruik om voorspellings dat die gedrag van die vorige tydperke naboots skep. 'N eenvoudige vorm van sulke modelle, gebaseer op vorige data, kan geskryf word as: Waar die beta Ek terme is die toepassing op voor waardes in die tyd reeks gewigte, en dit is gewoonlik om beta i 1 definieer, sonder verlies van algemeenheid. So vir 'n eerste orde proses, q 1 en het ons die model: dit wil sê die bewegende gemiddelde waarde word geskat as 'n geweegde gemiddelde van die huidige en onmiddellike verlede waardes. Dit gemiddelde proses is, in 'n sekere sin, 'n pragmatiese uitstrykingsmeganisme sonder 'n direkte skakel na 'n statistiese model. Ons kan egter 'n statistiese (of stogastiese) model wat die prosedures van bewegende gemiddeldes in samewerking met 'n arbitrêre prosesse behels spesifiseer. Dit is duidelik dat die verwagte waarde van xt onder: As ons toelaat dat 'n stel van 'n onafhanklike en identies verdeelde variate ( 'n ewekansige proses) met 'n nul gemiddelde en bekende vaste afwyking, dan kan ons die proses as 'n bewegende gemiddelde van orde q in terme van skryf hierdie model is 0, sodat die model is slegs geldig indien die xt is reeds aangepas om 'n nul beteken nie of as 'n vaste konstante (die gemiddelde van die XT) is bygevoeg om die opsomming. Dit is ook duidelik dat die variansie van xt is eenvoudig: Bogenoemde analise kan uitgebrei word om die kovariansie, cov (x t xtk.), Wat ons vind opbrengste te evalueer: Let daarop dat nie die gemiddelde waarde, of die kovariansie (of outokovariansiefunksie) by lag k is 'n funksie van die tyd, t. sodat die proses is tweede orde stilstaande. Die bogenoemde uitdrukking stel ons in staat om 'n uitdrukking te kry vir die outokorrelasie funksie (ACF): As k 0 rho k 1 en vir k GT Q rho k 0. Verder is die ACF is simmetriese en rho k rho-k. Die ACF kan bereken word vir 'n eerste orde MA proses: Die outoregressiewe of AR komponent van 'n ARMA model geskryf kan word in die vorm: waar die terme in is outokorrelasie koëffisiënte op lags 1,2. p en Z t is 'n residuele foutterm. Let daarop dat hierdie foutterm spesifiek betrekking het op die huidige tydperk, t. So vir 'n eerste orde proses, p 1 en ons het die model: Hierdie uitdrukkings meld dat die beraamde waarde van x op tydstip t word bepaal deur die onmiddellik voorafgaande waarde van x (dws op tydstip t -1) vermenigvuldig met 'n maat, Alpha . van die mate waarin die waardes vir alle pare waardes by tydperke lag 1 uitmekaar gekorreleer (dit wil sê hulle outokorrelasie), plus 'n residuele foutterm, z. op tyd t. Maar dit is juis die definisie van 'n Markov-proses. so 'n Markov-proses is 'n eerste orde outoregressiewe proses. As alfa 1 die model bepaal dat die volgende waarde van x is eenvoudig die vorige waarde plus 'n ewekansige foutterm, en dus is 'n eenvoudige 1D ewekansige loop. Indien meer terme ingesluit die model skat die waarde van x op tydstip t deur 'n geweegde som van hierdie terme plus 'n ewekansige fout komponent. As ons hierbo vervang die tweede uitdrukking in die eerste, ons het: en herhaal toediening van hierdie vervanging opbrengste: Nou as alfa LT1 en k is groot, kan hierdie uitdrukking word geskryf in die omgekeerde volgorde, met dalende terme en met bydrae van die term in x op die regterkant van die uitdrukking besig vanishingly klein, so ons het: Omdat die regterkant van hierdie uitdrukking modelle xt as die som van 'n geweegde stel voor waardes, in hierdie geval ewekansige fout terme, is dit duidelik dat hierdie AR model is, in werklikheid, 'n vorm van MA model. En as ons aanneem dat die fout terme nul gemiddelde en konstante stryd, dan soos in die MA-model wat ons het die verwagte waarde van die model as ook 0, die aanvaarding van die xt is aangepas om 'n nul gemiddelde verskaf, met variansie: Nou as solank Alpha LT1 hierdie opsomming is beperk en is eenvoudig 1 / (1- alfa), so ons het: (. x t x tk) soos met die MA-model hierbo, kan hierdie analise word uitgebrei na die kovariansie, cov evalueer van 'n eerste orde AR proses, wat ons vind opbrengste: vir Alpha LT1 hierdie opsomming is beperk en is eenvoudig Alpha k / (1- alfa 2), so ons het: dit blyk dat vir 'n eerste orde outoregressiewe model die outokorrelasie funksie (ACF) is eenvoudig gedefinieer deur opeenvolgende magte van die eerste orde outokorrelasie, met die voorwaarde Alpha LT1. Vir Alpha gt0 is dit net 'n vinnig dalende krag of eksponensiële kurwe, neig na nul, of vir lt0 dit is 'n dempende ossillasie kurwe, weer neig na nul. As 'n aanname gemaak word dat die tydreeks stilstaan bogenoemde ontleding kan uitgebrei word om die tweede en hoër orde outokorrelasies. Ten einde 'n AR model geskik is om 'n waargenome dataset, poog ons om die som van 'n vierkant foute (a kleinste kwadrate pas) met behulp van die kleinste aantal terme wat 'n bevredigende passing om die data te verskaf verminder. Modelle van hierdie tipe word beskryf as outoregressiewe. en toegepas kan word om beide tydreekse en ruimtelike datastelle (sien verder, ruimtelike Outoregressiemodelle). Hoewel dit in teorie 'n outoregressiewe model kan 'n goeie passing vir 'n waargeneem dataset verskaf, sou dit oor die algemeen vereis voor verwydering van en tendens en periodieke komponente, en selfs dan kan 'n groot aantal terme nodig het om 'n goeie passing te gee aan die data. Maar deur die kombinasie van die AR modelle met MA modelle, ons kan 'n gesin van gemengde modelle wat in 'n wye verskeidenheid situasies te kommunikeer toegepas kan word te produseer. Hierdie modelle is bekend as ARMA en ARIMA modelle, en word beskryf in die volgende onderafdelings. In die vorige twee onderafdelings het ons die MA modus van orde Q: en die AR model van orde p: Ons kan hierdie twee modelle kombineer deur hulle eenvoudig bymekaar te tel as 'n model van orde (P Q.), Waar ons p AR terme en q MA terme: In die algemeen, hierdie vorm van gesamentlike ARMA model gebruik kan word om 'n tydreeks met minder terme algehele as óf 'n MA of 'n AR model deur hulself te modelleer. Dit gee uitdrukking aan die geskatte waarde op tydstip t as die som van Q terme wat die gemiddelde variasie van ewekansige variasie oor Q vorige tydperke (die MA komponent) verteenwoordig, plus die bedrag van P AR terme wat die huidige waarde van x te bereken as die geweegde som van die p mees onlangse waardes. Maar hierdie vorm van model veronderstel dat die tydreeks stilstaan, wat selde die geval. In die praktyk, tendense en periodisiteit bestaan in baie datastelle, so daar is 'n behoefte om hierdie effekte te verwyder voordat hulle aansoek doen sulke modelle. Die opheffing is tipies deur onder meer in die model 'n aanvanklike breukmetodes stadium, gewoonlik een keer, twee of drie keer gedoen, totdat die reeks is ten minste ongeveer stilstaande - uitstal nie voor die hand liggend tendense of periodiciteiten. Soos met die MA en AR prosesse, is die breukmetodes proses beskryf word deur die einde van breukmetodes, byvoorbeeld 1, 2, 3. Gesamentlik hierdie drie elemente waaruit 'n driedubbele: (.. P d Q) wat die aard van die model toegepas definieer. In hierdie vorm, is die model beskryf word as 'n ARIMA model. Die brief wat ek in ARIMA verwys na die feit dat die dataset aanvanklik was differenced (vgl differensiasie) en wanneer die modellering voltooi die resultate moet dan word opgesom of geïntegreer tot die finale skattings en voorspellings te produseer. ARIMA modellering word hieronder bespreek. Soos in die vorige subartikel, die kombinasie van breukmetodes van 'n nie-stasionêre tydreekse met die ARMA model bied 'n kragtige familie van modelle wat in 'n wye verskeidenheid situasies te kommunikeer toegepas kan word. Ontwikkeling van hierdie uitgebreide vorm van model is grootliks te danke aan G E P Box en G M Jenkins, en as gevolg daarvan ARIMA modelle is ook bekend as Box-Jenkins modelle. Die eerste stap in die Box-Jenkins prosedure is om verskil die tydreeks totdat dit stilstaan, en daardeur te verseker dat die tendens en seisoenale komponente verwyder. In baie gevalle is een of twee stadium breukmetodes voldoende. Die differenced reeks sal korter as die bron reeks deur c tyd stappe, waar c die omvang van die breukmetodes wees. 'N ARMA model word dan toegerus om die gevolglike tydreekse. Omdat ARIMA modelle het drie parameters is daar baie variasies op die moontlike modelle wat gebruik kan word toegerus. Maar die besluit oor watter hierdie parameters kan moet gelei word deur 'n aantal basiese beginsels: (i) die model moet so eenvoudig as moontlik wees, dit wil sê bevat so min terme as moontlik, wat op sy beurt beteken dat die waardes van p en q moet klein wees (ii) die pas aan historiese data moet so goed as moontlik te wees, dit wil sê die grootte van die kwadraat verskille tussen die geskatte waarde op enige vorige tydperk en die werklike waarde, moet tot die minimum beperk (kleinste kwadrate beginsel) - die residue van die gekose model kan dan ondersoek om te sien of enige oorblywende residue is aansienlik verskil van 0 (sien verder hieronder) (iii) die gemeet gedeeltelike outokorrelasie op lags 1,2,3. moet 'n aanduiding van die einde van die AR komponent verskaf, met ander woorde die wat gekies is vir Q waarde (iv) die vorm van outokorrelasie funksie (ACF) plot kan raai die tipe ARIMA model vereis - die tabel hieronder (uit die NIST) verskaf riglyne oor interpretasie van die vorm van die ACF in terme van model seleksie. ARIMA Model tipe seleksie behulp ACF vorm Reeks is nie stilstaan. Standard ARIMA modelle word dikwels beskryf deur die driedubbele: (.. P d Q) soos hierbo. Hierdie definieer die struktuur van die model in terme van die orde van AR, breukmetodes en MA modelle te gebruik. Dit is ook moontlik om soortgelyke parameters vir seisoenaliteit in die data in te sluit, hoewel sulke modelle is meer kompleks te pas en te interpreteer - die afval (P. D. Q) word algemeen gebruik om so 'n model komponente te identifiseer. In die kiekie van SPSS hieronder getoon, is die dialoog vir die hand te kies nie-seisoenale en seisoenale strukturele elemente vertoon (soortgelyke fasiliteite is beskikbaar in ander geïntegreerde pakkette, soos SAS / ETS). Soos gesien kan word, die dialoog stel ook die data te omskep (tipies om te help met variansie stabilisering) en om gebruikers in staat stel om 'n konstante in die model (die verstek) insluit. Hierdie spesifieke sagteware hulpmiddel kan uitskieters te bespeur indien nodig, volgens 'n verskeidenheid van opsporing prosedures, maar in baie gevalle sal uitskieters is ondersoek en aangepas of verwyder en vervang waardes beraam, voor enige sodanige ontleding. SPSS Tyd Reeks Modeler: ARIMA modellering, kundige modus Verskeie ARIMA modelle kan toegerus om die data, met die hand of deur middel van 'n outomatiese proses (bv 'n stapsgewyse proses), en een of meer maatreëls gebruik om te oordeel wat is die beste in terme van pas en parsimonie. Model vergelyking maak tipies gebruik van een of meer van die vroeëre beskryf in hierdie handboek inligting teoretiese maatreëls - AIC, BIC en / of MDL (die R funksie, ARIMA (), bied die AIC meet, terwyl SPSS bied 'n verskeidenheid van geskikte maatreëls, ingesluit 'n weergawe van die BIC statistiek ander instrumente wissel in die voorsien maatreëls -. Minitab wat 'n verskeidenheid van TSA metodes bied, sluit nie AIC / BIC tipe statistieke). In die praktyk 'n wye verskeidenheid van maatreëls (dws anders as / bykomend tot die kleinste kwadrate gebaseer maatreëls, kan gebruik word om die model gehalte te evalueer. Byvoorbeeld, kan die gemiddelde absolute fout en die maksimum absolute fout wees bruikbare maatreëls, aangesien selfs 'n goeie kleinste kwadrate passing kan steeds swak wees in plekke. verskeie sagteware pakkette kan ook 'n algehele maatstaf van die outokorrelasie wat in die residue na pas die model kan bly. 'n statistiek dikwels toegepas is te danke aan Ljung en Box (1978 LJU1) en is van die vorm: waar n die aantal monsters (datawaardes), ri is die monster outokorrelasie op lag ek en k is die totale aantal lags waaroor die berekening uitgevoer word Q k is ongeveer versprei as.. 'n chi-kwadraat verspreiding met k -. m grade van vryheid, waar m die aantal parameters wat gebruik word in pas die model, met uitsluiting van enige konstante term of voorspeller veranderlikes (dit wil sê net insluitende die PD Q drietalle) As die maatstaf is statisties beduidend dit dui daarop dat die residue beduidende outokorrelasie bevat steeds na die model is toegerus, wat daarop dui dat 'n verbeterde model gesoek moet word. Voorbeeld: Modellering die groei van die lugredery passasiersgetalle Die volgende is 'n voorbeeld van outomatiese toebehore, met behulp van SPSS te the Box-Jenkins-Reinsel toetsdata van die lugredery passasiersgetalle REI1 vroeër in hierdie handboek. Aanvanklik geen spesifikasie van die datums wat maande binne jaar is vermeld. Die wat deur die outomatiese proses model was 'n ARIMA model (0,1,12), dit wil sê die proses korrek geïdentifiseer dat die reeks vereis een vlak van breukmetodes en toegepas n bewegende gemiddelde model met 'n periodisiteit van 12 en geen outokorrelasie komponent om die pas data. Die model pas geproduseer n R 2 waarde van 0,966, wat baie hoog is, en 'n maksimum absolute fout (MAE) van 75. Die visuele passing van die model om die data lyk uitstekend, maar die plot van die oorblywende outokorrelasie ná pas en Ljung - kader toets toon dat beduidende outokorrelasie bly, wat daarop dui dat 'n verbeterde model is moontlik. Outomatiese ARIMA geskik is om Internasionale Airline Passasiers: Maandeliks totale, 1949-1960 Om te ondersoek dit verder 'n hersiene model is toegerus, gebaseer op die bespreking van hierdie datastel deur Box en Jenkins (1968) en die opgedateerde uitgawe van Chatfields (1975 CHA1) boek in wat hy gebruik Minitab sy ontleding (6de uitgawe, 2003) illustreer. Die tydreekse is gedefinieer as 'n periodisiteit van 12 maande en 'n ARIMA model met komponente (0,1,1), (0,1,1). Grafies die resultate lyk baie soortgelyk aan die grafiek hierbo, maar met hierdie model die R-kwadraat is 0,991, die MAE41 en die Ljung-Box statistiek is nie meer beduidende (12.6, met 16 grade van vryheid). Die model is dus 'n verbetering op die oorspronklike (outomaties gegenereer) weergawe, wat bestaan uit 'n nie-seisoenale MA en 'n seisoenale MA komponent, geen outoregressiewe komponent, en een vlak van breukmetodes vir die seisoenale en nie-seisoenale strukture. Of pas is handleiding of outomatiese, kan 'n ARIMA model 'n goeie raamwerk vir die modellering van 'n tydreeks, of dit kan wees dat alternatiewe modelle of benaderings 'n meer bevredigende resultaat. Dikwels is dit moeilik om vooraf te weet hoe goed 'n gegewe voorspelling model is geneig om te wees, want dit is net in die lig van sy vermoë om toekomstige waardes van die data-reeks wat dit werklik kan geoordeel word voorspel. Dikwels word hierdie proses benader word deur die pas van die model om die verlede data uitgesluit onlangse tydperke (ook bekend as die hande-out monsters), en dan met behulp van die model om hierdie bekende toekomstige gebeure te voorspel, maar selfs hierdie bied slegs 'n beperkte vertroue in die toekoms geldigheid. Langer termyn vooruitskatting kan uiters onbetroubaar wees gebruik van sulke metodes. Dit is duidelik dat die internasionale lugverkeer statistieke model hierbo beskryf is nie in staat om korrek te voorspel passasiers getalle deur in die 1990's en daarna, of die 5-jaar daling in Amerikaanse internasionale lugredery passasiersgetalle post 2001/09/11. Net so kan 'n ARIMA model toegerus om historiese waardes van aandelebeurs pryse of indekswaardes (bv die NYSE of FTSE indekse) en sal tipies bied 'n uitstekende geskik is om die data (opbrengs 'n R-kwadraat-waarde van beter as 0.99), maar is dikwels van weinig nut vir die voorspelling van toekomstige waardes van hierdie pryse of indekse. Tipies ARIMA modelle word gebruik vir vooruitskatting, veral op die gebied van makro - en mikro-ekonomiese modelle. Hulle kan egter toegepas word in 'n wye verskeidenheid van dissiplines, hetsy in die vorm wat hier beskryf word, of aangevul met bykomende voorspeller veranderlikes wat geglo om die betroubaarheid van die voorspellings gemaak verbeter. Laasgenoemde is belangrik, want die hele struktuur van die ARMA modelle wat hierbo bespreek is, hang af van voor waardes en onafhanklike ewekansige gebeure met verloop van tyd, nie op enige verduidelikende of veroorsakende faktore. Vandaar ARIMA modelle sal slegs weerspieël en uit te brei afgelope patrone, wat nodig mag in voorspellings te verander deur faktore soos die makro-ekonomiese omgewing, tegnologie skofte, of langer termyn hulpbron en / of omgewingsveranderinge. BOX1 Box G E P, Jenkins G M (1968). Sommige onlangse vooruitgang in vooruitskatting en beheer. Toegepaste Statistiek, 17 (2), 91-109 BOX2 Box, G E P, Jenkins, G M, Reinsel G C (1994) Tydreeksanalise, voorspelling en beheer. 3rd ed. Prentice Hall, Englewood Cliffs, NJ CHA1 Chat Field C (1975) die ontleding van Times Reeks: teorie en praktyk. Chapman en Hall, Londen (sien ook, 6 ed. 2003) LJU1 Ljung G M, Posbus G E P (1978) Op 'n mate van 'n gebrek aan Fit in Tydreeksmodelle. Biometrika, 65, 297303 NIST / SEMATECH e-handboek statistiese metodes, www. itl. nist. gov/div898/handbook/ Afdeling 6.4: Inleiding tot tyd reeks. 2010 SPSS / PASW 17 (2008) AnalyzeForecasting (Tydreeksmodelle) REI1 Reinsel GC Datastelle vir Box-Jenkins modelle: www. stat. wisc. edu/Autoregressive bewegende gemiddelde ARMA (p, q) Modelle vir Tydreeksanalise - Deel 2 Deur Michael Saal-Moore op 24 Augustus 2015 in Deel 1 beskou ons die outoregressiewe model van orde p, ook bekend as die AR (p) model. Ons lei dit as 'n uitbreiding van die ewekansige loop model in 'n poging om bykomende reeks korrelasie in finansiële tydreekse verduidelik. Uiteindelik het ons besef dat dit was nie buigsaam genoeg om werklik al die outokorrelasie te vang in die laaste pryse van Amazon Inc. (AMZN) en die SampP500 VSA Equity Index. Die primêre rede hiervoor is dat beide van hierdie bates is voorwaardelik heteroskedastic. wat beteken dat hulle nie-stasionêre en het tydperke van wisselende variansie of wisselvalligheid groepering, wat nie in ag geneem word deur die AR (p) model geneem. In toekomstige artikels sal ons uiteindelik opbou tot die outoregressiewe geïntegreerde bewegende gemiddelde (ARIMA) modelle, asook die voorwaardelik heteroskedastic modelle van die boog en GARCH families. Hierdie modelle sal ons met ons eerste realistiese pogings tot vooruitskatting batepryse. In hierdie artikel, maar ons gaan die bewegende gemiddelde van orde q model, bekend as MA (Q) bekend te stel. Dit is 'n komponent van die meer algemene ARMA model en as sulks het ons nodig het om dit te verstaan voordat verdere beweeg. Ek raai jy die vorige artikels gelees in die Tydreeksanalise versameling as jy dit nog nie gedoen. Hulle kan al hier gevind word. Bewegende gemiddelde (MA) Models van orde q Rasionaal 'n bewegende gemiddelde model is soortgelyk aan 'n outoregressiewe model, behalwe dat in plaas daarvan om 'n lineêre kombinasie van die verlede tyd reeks waardes, dit is 'n lineêre kombinasie van die afgelope wit geraas terme. Intuïtief, beteken dit dat die MA model sien soos ewekansige wit geraas skokke direk by elke huidige waarde van die model. Dit is in teenstelling met 'n AR (p) model, waar die wit geraas skokke slegs indirek gesien. via regressie op vorige terme van die reeks. 'N Belangrike verskil is dat die MA-model net ooit sal sien die laaste Q skokke vir 'n spesifieke MA (Q) model, terwyl die AR (p) model al voor skokke in ag sal neem, al is dit in 'n decreasingly swak wyse. Definisie Wiskundig die MA (Q) is 'n lineêre regressiemodel en is insgelyks gestruktureer om AR (p): Moving Gemiddelde Model van orde q 'n tydreeksmodel, is 'n bewegende gemiddelde model van orde q. MA (Q), indien: begin xt wt beta1 w ldots betaq w end Waar is wit geraas met E (WT) 0 en variansie sigma2. As ons kyk na die agterste Shift-operateur. (Sien 'n vorige artikel) dan kan ons herskryf bogenoemde as 'n funksie phi van: begin xt (1 beta1 beta2 2 ldots betaq Q) wt phiq () wt einde Ons sal gebruik maak van die phi-funksie in die latere artikels te maak. Tweede Orde Properties Soos met AR (p) die gemiddelde van 'n MA (Q) proses is nul. Dit is maklik om te sien as die gemiddelde is bloot 'n som van middel van wit geraas terme, wat al self nul is. begin teks enspace MUX E (xt) som E (Wi) 0 einde begin teks enspace sigma2w (1 beta21 ldots beta2q) einde teks enspace rhok links 1 teks enspace k 0 som betai beta / sumq beta2i teks enspace k 1, ldots, Q 0 teks enspace k GT Q einde reg. Waar beta0 1. Was nou gaan 'n paar gesimuleerde data te genereer en gebruik dit om correlograms skep. Dit sal die formule hierbo vir rhok ietwat meer beton. Simulasies en Correlograms MA (1) Kom ons begin met 'n MA (1) proses. As ons 'beta1 0.6 verkry ons die volgende model: Soos met die AR (p) modelle in die vorige artikel kan ons R te gebruik om so 'n reeks te boots en dan trek die correlogram. Sedert weve het 'n baie oefening in die vorige Tydreeksanalise artikel reeks van die uitvoering van erwe, sal ek die R-kode skryf ten volle, eerder as om te verdeel dit: Die produksie is soos volg: Soos ons hierbo gesien het in die formule vir rhok , vir k GT Q, al outokorrelasies moet nul wees. Sedert Q 1, moet ons 'n beduidende hoogtepunt op k1 en dan onbelangrik pieke na daardie sien. As gevolg van steekproefneming vooroordeel ons moet verwag om 5 (effens) beduidende pieke sien op 'n monster outokorrelasie plot. Dit is presies wat die correlogram wys vir ons in hierdie geval. Ons het 'n beduidende hoogtepunt op k1 en dan onbelangrik pieke vir k GT 1, behalwe by K4 waar ons 'n effens beduidende piek. Trouens, dit is 'n nuttige manier om te sien of 'n MA (Q) model toepaslik is. Deur die neem van 'n blik op die correlogram van 'n bepaalde reeks kan ons sien hoeveel opeenvolgende nie-nul lags bestaan. As Q so lags bestaan dan kan ons tereg probeer om 'n MA (Q) model geskik is om 'n bepaalde reeks. Aangesien ons bewyse uit ons gesimuleerde data van 'n MA (1) proses, is nou van plan om te probeer en pas 'n MA (1) model vir ons gesimuleerde data. Ongelukkig is daar isnt 'n ekwivalente ma opdrag om die outoregressiewe model ar opdrag in R. In plaas daarvan, moet ons die meer algemene ARIMA opdrag gebruik en stel die outoregressiewe en geïntegreerde komponente aan nul. Ons doen dit deur die skep van 'n 3-vektor en die opstel van die eerste twee komponente (die autogressive en geïntegreerde parameters, onderskeidelik) na nul: Ons ontvang 'n paar nuttige uitset van die ARIMA opdrag. Eerstens, kan ons sien dat die parameter is beraam as hoed 0,602, wat baie naby aan die werklike waarde van beta1 0.6. In die tweede plek is die standaard foute reeds bereken vir ons, maak dit maklik om vertrouensintervalle bereken. Derdens, ontvang ons 'n geskatte variansie, log-waarskynlikheid en Akaike Inligting Criterion (wat nodig is vir model vergelyking). Die groot verskil tussen ARIMA en ar is dat ARIMA skat 'n onderskepdrie termyn omdat dit nie die gemiddelde waarde van die reeks af te trek. Vandaar ons nodig het om versigtig te wees wanneer die uitvoering van voorspellings met behulp van die ARIMA opdrag. Wel later terug te keer na hierdie punt. As 'n vinnige check op pad was om vertrouensintervalle vir hoed bereken: Ons kan sien dat die 95 vertrouensinterval bevat die ware parameter waarde van beta1 0.6 en daarom het ons die model kan oordeel 'n goeie passing. Dit is duidelik dat hierdie moet verwag word, aangesien ons die data nageboots in die eerste plek Hoe dinge verander as ons die teken van beta1 om -0,6 verander Kom dieselfde analise uit te voer: Die produksie is soos volg: Ons kan sien dat by k1 ons het 'n beduidende hoogtepunt in die correlogram, behalwe dat dit toon negatiewe korrelasie, as wed verwag van 'n MA (1) model met negatiewe eerste koëffisiënt. Weereens al pieke buite k1 is onbelangrik. Kom ons pas 'n MA (1) model en skat die parameter: hoed -0,730, wat is 'n klein onderskat van beta1 -0,6. Ten slotte, kan bereken die vertroue interval: Ons kan sien dat die ware parameter waarde van beta1-0.6 is vervat in die 95 vertrouensinterval, die verskaffing van ons met bewyse van 'n goeie model pas. MA (3) Kom ons loop deur dieselfde prosedure vir 'n MA (3) proses. Hierdie keer moet ons beduidende hoogtepunte op k verwag, en onbelangrik pieke vir k GT 3. Ons gaan die volgende koëffisiënte gebruik: beta1 0.6, beta2 0.4 en beta3 0.2. Kom na te boots 'n MA (3) proses van hierdie model. Ive het die aantal ewekansige monsters tot 1000 in hierdie simulasie, wat dit makliker maak om die ware outokorrelasie struktuur sien, ten koste van die maak van die oorspronklike reeks moeiliker om te interpreteer: Die produksie is soos volg: Soos verwag die eerste drie pieke is beduidende . Maar so is die vierde. Maar ons kan tereg daarop dui dat hierdie mag wees as gevolg van steekproefneming vooroordeel soos ons verwag om te sien 5 van die pieke wat beduidende buite KQ. Kom nou pas 'n MA (3) model om die data te probeer en skatting parameters: Die skattings hoed 0,544, hoed 0,345 en hoed 0,298 is naby aan die ware waardes van beta10.6, beta20.4 en beta30.3, onderskeidelik. Ons kan produseer ook vertrouensintervalle gebruik van die onderskeie standaard foute: In elk geval nie die 95 vertrouensintervalle die ware parameter waarde bevat en kan ons aflei dat ons 'n goeie passing met ons MA (3) model, soos verwag kan word. Finansiële inligting in Deel 1 beskou ons Amazon Inc. (AMZN) en die SampP500 VSA Equity Index. Ons toegerus die AR (p) model vir beide en gevind dat die model nie in staat was om effektief te vang die kompleksiteit van die reeks korrelasie, veral in die rolverdeling van die SampP500, waar langtermyn-geheue effekte blyk teenwoordig te wees. Ek sal nie stip die kaarte weer vir die pryse en outokorrelasie, in plaas Siek verwys u na die vorige post. Amazon Inc. (AMZN) Kom ons begin deur te probeer om 'n seleksie van MA (Q) pas modelle om AMZN, naamlik met Q in. Soos in Deel 1, goed gebruik quantmod om die daaglikse pryse vir AMZN aflaai en dan sit hulle in 'n log opbrengste stroom sluitingstyd pryse: Noudat ons die log opbrengste stroom kan ons die ARIMA opdrag gebruik om in te pas MA (1), MA (2) en MA (3) modelle en dan skat die parameters van elke. Vir MA (1) ons het: Ons kan die residue van die daaglikse log opbrengste en die toegeruste model plot: Let daarop dat ons 'n paar beduidende hoogtepunte op lags k2, K11, K16 en k18, wat aandui dat die MA (1) model is onwaarskynlik dat 'n goeie passing vir die gedrag van die AMZN log opbrengste wees, aangesien dit lyk nie soos 'n verwesenliking van wit geraas. Kom ons probeer 'n MA (2) model: Beide van die skattings vir die beta koëffisiënte is negatief. Kom ons plot die residue weer: Ons kan sien dat daar byna nul outokorrelasie in die eerste paar lags. Ons het egter vyf effens beduidende hoogtepunte op lags K12, K16, K19, k25 en K27. Dit is suggestief dat die MA (2) model is die opneem van 'n groot deel van die outokorrelasie, maar nie almal van die lang-geheue effekte. Hoe gaan dit met 'n MA (3) model Weereens, kan ons die residue Plot: Die MA (3) residue plot lyk byna identies aan dié van die MA (2) model. Dit is nie verbasend nie, as 'n nuwe parameter is die toevoeging van 'n model wat skynbaar weg verduidelik baie van die korrelasies met korter lags, maar dit sal nie veel van 'n uitwerking op die langer termyn loop. Al hierdie getuienis is suggestief van die feit dat 'n MA (Q) model is onwaarskynlik handig al die korrelasie in isolasie te wees. ten minste vir AMZN. SampP500 As jy onthou, in Deel 1 het ons gesien dat die eerste orde differenced daaglikse log opbrengste struktuur van die SampP500 besit baie beduidende pieke op verskillende lags, beide kort en lang. Dit verskaf bewyse van beide voorwaardelike heteroskedasticity (dit wil sê wisselvalligheid groepering) en langtermyn-geheue effekte. Dit lei ons tot die gevolgtrekking dat die AR (p) model onvoldoende is om al die outokorrelasie teenwoordig te vang was. Soos weve bo die MA (Q) model gesien was onvoldoende om bykomende reeks korrelasie in die residue van die toegeruste model om die eerste orde vang differenced daaglikse log prys reeks. Ons sal nou probeer om die MA (Q) model om die SampP500 pas. Mens kan vra waarom ons doen dit as ons weet dat dit is onwaarskynlik dat 'n goeie passing wees. Dit is 'n goeie vraag. Die antwoord is dat ons nodig het om te sien presies hoe dit is nie 'n goeie passing, want dit is die uiteindelike proses sal ons volgende wanneer ons teëkom baie meer gesofistikeerd modelle, wat potensieel moeiliker om te interpreteer. Kom ons begin deur die verkryging van die data en dit na 'n eerste orde differenced reeks logaritmies getransformeer daaglikse sluitingspryse soos in die vorige artikel: Ons gaan nou 'n MA (1), MA (2) en MA (3) model aan te pas die reeks, soos ons hierbo gedoen het vir AMZN. Kom ons begin met MA (1): Kom ons maak 'n plot van die residue van hierdie toegeruste model: Die eerste beduidende piek plaasvind op k2, maar daar is baie meer aan k in. Dit is duidelik nie 'n besef van wit geraas en so moet ons die MA (1) model as 'n potensiële goeie passing vir die SampP500 verwerp. Maak die situasie te verbeter met MA (2) Weereens, kan 'n plot van die residue van hierdie toegeruste MA (2) model: Terwyl die piek by K2 verdwyn (soos wed verwag), is ons nog steeds links met die beduidende hoogtepunte op baie meer lags in die residue. Weereens, vind ons die MA (2) model is nie 'n goeie passing. Ons moet verwag nie, want die MA (3) model, minder korrelasie by K3 as vir die MA (2) te sien, maar ons moet ook verwag weereens geen vermindering in verdere lags. Ten slotte, kan 'n plot van die residue van hierdie toegeruste MA (3) model: Dit is presies wat ons sien in die correlogram van die residue. Vandaar die MA (3), met die ander modelle hierbo, is nie 'n goeie passing vir die SampP500. Volgende stappe Weve nou ondersoek twee groot tydreeksmodelle in detail, naamlik die Autogressive model van orde p, AR (p) en dan bewegende gemiddelde van orde q, MA (Q). Weve gesien dat hulle is albei in staat te verduidelik weg van die outokorrelasie in die residue van eerste orde differenced daaglikse log pryse van aandele en indekse, maar wisselvalligheid groepering en langtermyn-geheue effek voortduur.
No comments:
Post a Comment